green edge
increase test scores

Linear Relationships

8th Grade

Alabama Course of Study Standards: 9

Interpret y = mx + b as defining a linear equation whose graph is a line with m as the slope and b as the y-intercept.
  1. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in a coordinate plane.
  2. Given two distinct points in a coordinate plane, find the slope of the line containing the two points and explain why it will be the same for any two distinct points on the line.
  3. Graph linear relationships, interpreting the slope as the rate of change of the graph and the y-intercept as the initial value.
  4. Given that the slopes for two different sets of points are equal, demonstrate that the linear equations that include those two sets of points may have different y-intercepts.

Arizona Academic Standards: 8.EE.B.6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane. Derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at (0, b).

Common Core State Standards: Math.8.EE.6 or 8.EE.B.6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.

Georgia Standards of Excellence (GSE): 8.PAR.4.1

Use the equation y = mx (proportional) for a line through the origin to derive the equation y = mx + b (non-proportional) for a line intersecting the vertical axis at b.

Alabama Course of Study Standards: 16

Construct a function to model a linear relationship between two variables.
  1. Interpret the rate of change (slope) and initial value of the linear function from a description of a relationship or from two points in a table or graph.

Arizona Academic Standards: 8.F.B.4

Given a description of a situation, generate a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or a graph. Track how the values of the two quantities change together. Interpret the rate of change and initial value of a linear function in terms of the situation it models, its graph, or its table of values.

Common Core State Standards: Math.8.F.4 or 8.F.B.4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Georgia Standards of Excellence (GSE): 8.FGR.5.7

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph.

North Carolina - Standard Course of Study: 8.F.4

Analyze functions that model linear relationships.
  • Understand that a linear relationship can be generalized by y = mx + b.
  • Write an equation in slope-intercept form to model a linear relationship by determining the rate of change and the initial value, given at least two (x, y) values or a graph.
  • Construct a graph of a linear relationship given an equation in slope-intercept form.
  • Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of the slope and y-intercept of its graph or a table of values.

Pennsylvania Core Standards: M08.B-E.2.1.2

Use similar right triangles to show and explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane

Pennsylvania Core Standards: M08.B-E.2.1.3

Derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.

Pennsylvania Core Standards: CC.2.2.8.C.2

Use concepts of functions to model relationships between quantities.

Pennsylvania Core Standards: M08.B-F.2.1.1

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models and in terms of its graph or a table of values.

Georgia Standards of Excellence (GSE): 7.PAR.4.7

Use similar triangles to explain why the slope, m, is the same between any two distinct points on a nonvertical line in the coordinate plane.

8th Grade Math - Linear Relationships Lesson
 




green bar
green bar green bar

Processing Request...